Source code for gwpopulation_pipe.vt_helper

from dataclasses import dataclass, field

import argparse
import glob
from functools import reduce

import dill
import h5py
import numpy as np
from bilby.core.utils import logger

from gwpopulation.utils import xp
from gwpopulation.vt import GridVT, ResamplingVT
from .utils import get_path_or_local

N_EVENTS = np.nan


[docs] def dummy_selection(*args, **kwargs): return 1
[docs] def mass_only_scalar_calibrated_grid_vt(vt_file, model): selection = _mass_only_calibrated_grid_vt( vt_file=vt_file, model=model, calibration="scalar", ) return selection
[docs] def mass_only_linear_calibrated_grid_vt(vt_file, model): selection = _mass_only_calibrated_grid_vt( vt_file=vt_file, model=model, calibration="linear", ) return selection
[docs] def mass_only_quadratic_calibrated_grid_vt(vt_file, model): selection = _mass_only_calibrated_grid_vt( vt_file=vt_file, model=model, calibration="quadratic", ) return selection
gaussian_mass_only_scalar_calibrated_grid_vt = mass_only_scalar_calibrated_grid_vt gaussian_mass_only_linear_calibrated_grid_vt = mass_only_linear_calibrated_grid_vt gaussian_mass_only_quadratic_calibrated_grid_vt = mass_only_quadratic_calibrated_grid_vt broken_mass_only_scalar_calibrated_grid_vt = mass_only_scalar_calibrated_grid_vt broken_mass_only_linear_calibrated_grid_vt = mass_only_linear_calibrated_grid_vt broken_mass_only_quadratic_calibrated_grid_vt = mass_only_quadratic_calibrated_grid_vt def _mass_only_calibrated_grid_vt(vt_file, model, calibration=None): import h5py model = model vt_data = dict() with h5py.File(vt_file) as _vt_data: vt_data["vt"] = _vt_data["vt_early_high"][:] if calibration is not None: vt_data["vt"] *= _vt_data[f"{calibration}_calibration"][:] vt_data["vt"] = xp.asarray(vt_data["vt"]) vt_data["mass_1"] = xp.asarray(_vt_data["m1"][:]) vt_data["mass_ratio"] = xp.asarray(_vt_data["q"][:]) selection = GridVT(model=model, data=vt_data) return selection
[docs] @dataclass class VTData: prior: np.ndarray total_generated: int analysis_time: float mass_1: np.ndarray = field(default=None) mass_1_detector: np.ndarray = field(default=None) mass_ratio: np.ndarray = field(default=None) a_1: np.ndarray = field(default=None) a_2: np.ndarray = field(default=None) cos_tilt_1: np.ndarray = field(default=None) cos_tilt_2: np.ndarray = field(default=None) redshift: np.ndarray = field(default=None) luminosity_distance: np.ndarray = field(default=None) mass_2: np.ndarray = field(default=None) mass_2_detector: np.ndarray = field(default=None) def append(self, other): self_sample_rate = self.analysis_time / self.total_generated other_sample_rate = other.analysis_time / other.total_generated self_weight = 2 * self_sample_rate / (self_sample_rate + other_sample_rate) other_weight = 2 * other_sample_rate / (self_sample_rate + other_sample_rate) for key in self.__dataclass_fields__: value = getattr(self, key) alt = getattr(other, key) if key == "mass_2": if value is None and alt is None: continue elif value is not None and alt is not None: setattr(self, key, np.concatenate([value, alt])) else: raise ValueError("mass_2 is only defined for one VTData object") elif key in ["total_generated", "analysis_time"]: setattr(self, key, value + alt) elif key == "prior": setattr( self, key, np.concatenate([value * self_weight, alt * other_weight]), ) else: setattr(self, key, np.concatenate([value, alt])) def __add__(self, other): new = VTData(**self.__dict__) new += other return new def __iadd__(self, other): self.append(other) return self def __getitem__(self, item): return getattr(self, item) def __setitem__(self, key, value): return setattr(self, key, value) def items(self): return self.__dict__.items() def keys(self): return self.__dict__.keys() def get(self, key, alt): return self.__dict__.get(key, alt) def to_dict(self, keys=None): if keys is None: keys = list(self.__dict__.keys()) data = {key: getattr(self, key) for key in keys} return {key: value for key, value in data.items() if value is not None}
[docs] def load_injection_data(vt_file, ifar_threshold=1, snr_threshold=11): """ Load the injection file in the O3 injection file format. For mixture files and multiple observing run files we only have the full `sampling_pdf`. We use a different parameterization than the default so we require a few changes. - we parameterize the model in terms of primary mass and mass ratio and the injections are generated in primary and secondary mass. The Jacobian is `primary mass`. - we parameterize spins in spherical coordinates, neglecting azimuthal parameters. The injections are parameterized in terms of cartesian spins. The Jacobian is `1 / (2 pi magnitude ** 2)`. For O3 injections we threshold on FAR. For O1/O2 injections we threshold on SNR as there is no FAR provided by the search pipelines. Parameters ---------- vt_file: str The path to the hdf5 file containing the injections. ifar_threshold: float The threshold on inverse false alarm rate in years. Default=1. snr_threshold: float The SNR threshold when there is no FAR. Default=11. Returns ------- gwpop_data: dict Data required for evaluating the selection function. """ logger.info(f"Loading VT data from {vt_file}.") if vt_file.endswith(".pkl"): with open(vt_file, "rb") as ff: data = dill.load(ff) for key, value in data.items(): if isinstance(value, np.ndarray): data[key] = xp.asarray(value) return VTData(**data) with h5py.File(vt_file, "r") as ff: if "injections" in ff: data = ff["injections"] total_generated = int(data.attrs["total_generated"][()]) analysis_time = data.attrs["analysis_time_s"][()] / 365.25 / 24 / 60 / 60 elif "events" in ff: import pandas as pd data = pd.DataFrame(ff["events"][()]).to_dict(orient="list") data = {key: np.array(value) for key, value in data.items()} total_generated = int(ff.attrs["total_generated"][()]) try: analysis_time = ( ff.attrs["total_analysis_time"][()] / 365.25 / 24 / 60 / 60 ) except KeyError: analysis_time = ff.attrs["analysis_time"][()] / 365.25 / 24 / 60 / 60 if analysis_time == 0: analysis_time = 1 / 12 else: raise KeyError(f"Unable to identify injections from {ff.keys()}") if "mass1_source" in data: mass_1_key = "mass1_source" mass_2_key = "mass2_source" else: mass_1_key = "mass_1_source" mass_2_key = "mass_2_source" if "redshift" in data: redshift_key = "redshift" else: redshift_key = "z" found_shape = data[mass_1_key][()].shape found = get_found_injections(data, found_shape, ifar_threshold, snr_threshold) n_found = sum(found) if n_found == 0: raise ValueError("No sensitivity injections pass threshold.") gwpop_data = dict( mass_1=xp.asarray(data[mass_1_key][()][found]), mass_ratio=xp.asarray( data[mass_2_key][()][found] / data[mass_1_key][()][found] ), redshift=xp.asarray(data[redshift_key][()][found]), total_generated=total_generated, analysis_time=analysis_time, ) for ii in [1, 2]: gwpop_data[f"a_{ii}"] = ( xp.asarray( data.get(f"spin{ii}x", np.zeros(n_found))[()][found] ** 2 + data.get(f"spin{ii}y", np.zeros(n_found))[()][found] ** 2 + data[f"spin{ii}z"][()][found] ** 2 ) ** 0.5 ) gwpop_data[f"cos_tilt_{ii}"] = ( xp.asarray(data[f"spin{ii}z"][()][found]) / gwpop_data[f"a_{ii}"] ) if ( "sampling_pdf" in data ): # O1+O2+O3 mixture and endO3 injections (https://dcc.ligo.org/LIGO-T2100377, https://dcc.ligo.org/LIGO-T2100113) gwpop_data["prior"] = ( xp.asarray(data["sampling_pdf"][()][found]) * xp.asarray(data[mass_1_key][()][found]) * (2 * np.pi * gwpop_data["a_1"] ** 2) * (2 * np.pi * gwpop_data["a_2"] ** 2) ) elif ( "lnpdraw_mass1_source_mass2_source_redshift_spin1x_spin1y_spin1z_spin2x_spin2y_spin2z" in data ): # O1+O2+O3+O4a mixture (https://dcc.ligo.org/LIGO-T2400110) gwpop_data["prior"] = xp.exp( xp.asarray( data[ "lnpdraw_mass1_source_mass2_source_redshift_spin1x_spin1y_spin1z_spin2x_spin2y_spin2z" ][()][found] ) + xp.log(xp.asarray(data[mass_1_key][()][found])) + xp.log(2 * np.pi * gwpop_data["a_1"] ** 2) + xp.log(2 * np.pi * gwpop_data["a_2"] ** 2) ) else: # O4a sensitivity injections (https://dcc.ligo.org/LIGO-T2400073) gwpop_data["prior"] = xp.exp( xp.sum( [ xp.asarray(data[f"lnpdraw_{key}"][()][found]) for key in [ "mass1_source", "mass2_source_GIVEN_mass1_source", "z", "spin1_magnitude", "spin2_magnitude", "spin1_polar_angle", "spin2_polar_angle", ] ], axis=0, ) ) gwpop_data["prior"] /= xp.sin(xp.arccos(gwpop_data["cos_tilt_1"])) gwpop_data["prior"] /= xp.sin(xp.arccos(gwpop_data["cos_tilt_2"])) gwpop_data["prior"] *= gwpop_data["mass_1"] weights = 1 if "v1_1ifo" in vt_file: weights *= data["weights_1ifo"][()][found] elif "weights" in data: weights *= data["weights"][()][found] gwpop_data["prior"] /= weights return VTData(**gwpop_data)
[docs] def get_found_injections(data, shape, ifar_threshold=1, snr_threshold=11): found = np.zeros(shape, dtype=bool) has_ifar = any(["ifar" in key.lower() for key in data.keys()]) if not has_ifar and any( [key for key in data.keys() if key.lower().startswith("far_")] ): far_keys = [key for key in data.keys() if key.lower().startswith("far_")] for far_key in far_keys: data[f"i{far_key}"] = 1 / data[far_key][()] has_ifar = True if ifar_threshold is None: ifar_threshold = 1e300 if has_ifar: for key in data: if "ifar" in key.lower(): found |= data[key][()] > ifar_threshold if "name" in data.keys(): gwtc1 = (data["name"][()] == b"o1") | (data["name"][()] == b"o2") found |= gwtc1 & (data["optimal_snr_net"][()] > snr_threshold) if "semianalytic_observed_phase_maximized_snr_net" in data.keys(): found |= ( data["semianalytic_observed_phase_maximized_snr_net"][()] > snr_threshold ) return found elif snr_threshold is not None: if "observed_phase_maximized_snr_net" in data.keys(): found |= data["observed_phase_maximized_snr_net"][()] > snr_threshold elif "observed_snr_net" in data.keys(): found |= data["observed_snr_net"][()] > snr_threshold return found else: raise ValueError("Cannot find keys to filter sensitivity injections.")
[docs] def apply_injection_prior(data, parameters): """ We assume the injection prior is uniform in the detector frame primary mass and mass ratio. """ from .data_collection import primary_mass_to_chirp_mass_jacobian, aligned_spin_prior if "mass_2" in parameters: data["mass_2"] = data["mass_1"] * data["mass_ratio"] data["prior"] /= data["mass_1"] if "chirp_mass" in parameters: jacobian = primary_mass_to_chirp_mass_jacobian(data) data["chirp_mass"] = data["mass_1"] / jacobian data["prior"] *= jacobian if "chi_1" in parameters: data["chi_1"] = data["a_1"] * data["cos_tilt_1"] data["prior"] *= 2 * aligned_spin_prior(data["chi_1"]) if "chi_2" in parameters: data["chi_2"] = data["a_2"] * data["cos_tilt_2"] data["prior"] *= 2 * aligned_spin_prior(data["chi_2"]) if "mass_1_detector" in parameters: data["mass_1_detector"] = data["mass_1"] * (1 + data["redshift"]) data["prior"] /= 1 + data["redshift"] if "mass_2_detector" in parameters: data["mass_2_detector"] = data["mass_1_detector"] * data["mass_ratio"] data["prior"] /= data["mass_1_detector"] if "chirp_mass_detector" in parameters: jacobian = primary_mass_to_chirp_mass_jacobian(data) try: data["chirp_mass_detector"] = data["mass_1_detector"] / jacobian data["prior"] *= jacobian except (KeyError, AttributeError, TypeError): data["chirp_mass_detector"] = ( data["mass_1"] * (1 + data["redshift"]) / jacobian ) data["prior"] *= jacobian / (1 + data["redshift"]) if "luminosity_distance" in parameters: from wcosmo import Planck15 data["luminosity_distance"] = Planck15.luminosity_distance(data["redshift"]) data["prior"] /= Planck15.dDLdz(data["redshift"])
[docs] def dump_injection_data(args, save_filename=None): """ Dump the injection data to a pickle file to :code:`{args.run_dir}/data/injections.pkl` for easier file transfer. This also makes sure the required parameters are present in the data and updates the prior accordingly. Parameters ---------- args: Command-line arguments save_filename: The filename to save the data to. If None, it will save the data to args.run_dir/data/injections.pkl. """ if "*" in args.vt_file: data = reduce( lambda x, y: x + y, [ load_injection_data( vt_file=get_path_or_local(vt_file), ifar_threshold=args.vt_ifar_threshold, snr_threshold=args.vt_snr_threshold, ) for vt_file in glob.glob(args.vt_file) ], ) else: data = load_injection_data( vt_file=get_path_or_local(args.vt_file), ifar_threshold=args.vt_ifar_threshold, snr_threshold=args.vt_snr_threshold, ) apply_injection_prior(data, args.parameters) if save_filename is None: fname = f"{args.run_dir}/data/injections.pkl" else: fname = save_filename data_dict = data.to_dict() keys = args.parameters.copy() + ["prior", "total_generated", "analysis_time"] data_dict = {key: value for key, value in data_dict.items() if key in keys} with open(fname, "wb") as ff: dill.dump(data_dict, ff) logger.info(f"Written injection data to {fname}")
[docs] def injection_resampling_vt(vt_file, model, ifar_threshold=1, snr_threshold=11): if "*" in vt_file: vt_files = glob.glob(vt_file) data = sum( [ load_injection_data( vt_file=get_path_or_local(filename), ifar_threshold=ifar_threshold, snr_threshold=snr_threshold, ) for filename in vt_files ] ) else: data = load_injection_data( vt_file=get_path_or_local(vt_file), ifar_threshold=ifar_threshold, snr_threshold=snr_threshold, ) return ResamplingVT(model=model, data=data.to_dict(), n_events=N_EVENTS)
[docs] def injection_resampling_vt_no_redshift( vt_file, model, ifar_threshold=1, snr_threshold=11 ): data = load_injection_data( vt_file=vt_file, ifar_threshold=ifar_threshold, snr_threshold=snr_threshold ) data["prior"] = data["mass_1"] ** (-2.35 + 1) * data["mass_ratio"] ** 2 return ResamplingVT(model=model, data=data.to_dict(), n_events=N_EVENTS)
[docs] def create_injection_parser(): parser = argparse.ArgumentParser() parser.add_argument( "vt_file", type=str, help="File to load VT data from or a glob string matching multiple files to combine.", ) parser.add_argument( "--vt-ifar-threshold", type=float, default=1, help="IFAR threshold for resampling injections", ) parser.add_argument( "--vt-snr-threshold", type=float, default=11, help="SNR threshold for resampling injections. " "This is only used for O1/O2 injections", ) parser.add_argument( "--vt-function", type=str, default="injection_resampling_vt", help="Function to generate selection function from.", ) parser.add_argument( "--parameters", "-p", action="append", help=( "Parameters that are fit with the model. " "These are the parameters that will be extracted from the injections " "and should follow Bilby naming conventions with the exception that all masses " "are assumed to be in the source frame. Here is a list of parameters for which " "prior factors will be properly accounted. " "mass_1: source frame primary mass, mass_2: source frame secondary mass, " "chirp_mass: source frame chirp mass, mass_ratio: mass ratio, redshift: redshift, " "a_1: primary spin magnitude, a_2: secondary spin magnitude, cos_tilt_1: " "cosine primary spin tilt, cos_tilt_2: cosine secondary spin tilt, " "chi_1: aligned primary spin, chi_2: aligned secondary spin." "Any other parameters will be assumed to have a flat prior." "These parameters are also used to set the fiducial prior values. " "No redundancy checks are performed so users should be careful to not " "include unused parameters as that may have unintended consequences." ), ) parser.add_argument( "--save_as", "-s", type=str, default="injections.pkl", help="name of pickle file to save the injections", ) return parser
[docs] def read_injections(): parser = create_injection_parser() args = parser.parse_args() save_file = args.save_as save_file = save_file.split(".pkl")[0] + ".pkl" dump_injection_data(args, save_file)